

Luka Šajn Miroslav Radojevic Tomaž Dobravec

3D VOLUME LOCALIZATION USING MINIATURES

 Problem definition and motivation

Methods

Testing environment

Results

3D volume localization

- 3D volume localization problem is a problem of estimating the atlas coordinates of a given sample 3D volume
- Typical approach: compare the sample with the volumes with known coordinates.

Methods used to solve 3D volume localization problem:

- Compare sample volume with the other volumes from the dataset and find the most similar.
 - CBIR problem

Page 4

- Collection of histograms
- Estimate the coordinates using classifier regression.

We compared the two approaches.

Histogram matching

- Different orientation of the volumes
- Proper alignment -> histograms

Drawback: loss of spatial intensity distribution information

Histogram dissimilarity measures

Bin-to-bin dissimilarity measures:

$$\begin{split} h(L,M) &= \frac{\sum_{j} \min(L(j), M(j)))}{\sum_{j} M(j)} \\ L_{1}(L,M) &= \frac{\sum_{j} abs(L(j) - M(j))}{N} \\ L_{2}(L,M) &= \frac{\sum_{j} (L(j) - M(j))^{2}}{N} \\ \chi^{2}(L,M) &= \frac{\sum_{j} (L(j) - M(j))^{2}}{\sum_{j} L(j) + M(j)} \\ Jf(L,M) &= \sum_{j} \left(L(j) log \frac{2L(j)}{L(j) + M(j)} + M(j) log \frac{2M(j)}{L(j) + M(j)} \right) \end{split}$$

Cross-bin dissimilarity measures:

• Earth Movers Distance (EMD)

Weighting the coordinates

- Inter-histogram dissimilarities.
- Candidates for the result: 10 most similar volumes.
- Result weighted averaging:

$$[x_{est}, y_{est}, z_{est}] = \sum_{i=1}^{10} w_i [x_i y_i z_i]$$

where $w_i = e^{-\lambda i}$ and $\lambda = max\left(\frac{d_i - mean(d_i)}{var(d_i)}\right)$

Classifier regression

- Image features -> carry out the regression
- Classifier scores are used to interpolate coordinates
- Typical features used:
 - mean,
 - standard deviation,
 - median,
 - volume,
 - centroid,
 - central moments,

- ...

Testing environment

- Dataset consisting of 3926 volumes
- Each volumes: 32 × 32 × 32 image cube.
- Voxel intensities: ranging from 0 to 4095
- Volumes resembling different regions of the body with different orientation

Results - histograms

Histogram comparison: quite precise

• A cross-bin dissimilarity is preferred

• EMD: best both in terms of accuracy and robustness, but it is slow

Dissimilarity measure	h	L_1	L_2	χ^2	$\mathbf{J}\mathbf{f}$	EMD
Estimated position error	16.5792	3.7436	129.8316	1.3632	1.2895	1.2466

Results - histograms

Results - classifier regression

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Summary

- We tested two approaches: histograms classifier regression
 - EMD was used for histograms
 - 10-NN and Random Ferns was used for regression
- Classification regression using 10-NN proved to be slightly less precise but significantly faster
- Random Ferns best performance: voxel volumes and 3D patches.

Page 14 21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr